MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation.
نویسندگان
چکیده
MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression primarily through translational repression. In erythropoietic (E) culture of cord blood CD34+ progenitor cells, the level of miR 221 and 222 is gradually and sharply down-modulated. Hypothetically, this decline could promote erythropoiesis by unblocking expression of key functional proteins. Indeed, (i) bioinformatic analysis suggested that miR 221 and 222 target the 3' UTR of kit mRNA; (ii) the luciferase assay confirmed that both miRs directly interact with the kit mRNA target site; and (iii) in E culture undergoing exponential cell growth, miR down-modulation is inversely related to increasing kit protein expression, whereas the kit mRNA level is relatively stable. Functional studies show that treatment of CD34+ progenitors with miR 221 and 222, via oligonucleotide transfection or lentiviral vector infection, causes impaired proliferation and accelerated differentiation of E cells, coupled with down-modulation of kit protein: this phenomenon, observed in E culture releasing endogenous kit ligand, is magnified in E culture supplemented with kit ligand. Furthermore, transplantation experiments in NOD-SCID mice reveal that miR 221 and 222 treatment of CD34+ cells impairs their engraftment capacity and stem cell activity. Finally, miR 221 and 222 gene transfer impairs proliferation of the kit+ TF-1 erythroleukemic cell line. Altogether, our studies indicate that the decline of miR 221 and 222 during exponential E growth unblocks kit protein production at mRNA level, thus leading to expansion of early erythroblasts. Furthermore, the results on kit+ erythroleukemic cells suggest a potential role of these miRs in cancer therapy.
منابع مشابه
MicroRNAs 221 and 222 regulate the undifferentiated state in mammalian male germ cells.
Continuity of cycling cell lineages relies on the activities of undifferentiated stem cell-containing subpopulations. Transition to a differentiating state must occur periodically in a fraction of the population to supply mature cells, coincident with maintenance of the undifferentiated state in others to sustain a foundational stem cell pool. At present, molecular mechanisms regulating these a...
متن کاملMicroRNA-222 promotes human non-small cell lung cancer H460 growth by targeting p27.
Two highly homologous microRNAs (miRNAs, miRs), miR-222 and miR-221, act as a cluster in cellular regulation. We have previously reported that miR-221 promoted the growth of human non-small cell lung cancer cell line H460. However, the role of miR-222 in regulating the growth of H460 is unclear. H460 cells were transfected with miR-222 mimics, inhibitors or their negative controls and their eff...
متن کاملDownregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN
MicroRNA-221 and microRNA-222 (miR-221/222) have been identified as oncogenes and confirmed to be overexpressed in various types of cancer. However, the regulation mechanism of miR-221/222 in oral squamous cell carcinoma (OSCC) remains to be fully elucidated. Previously, an miR-221/222 sponge was successfully constructed and its effect on the downregulation of miR-221/222 expression was investi...
متن کاملThe role of microRNA genes in papillary thyroid carcinoma.
Apart from alterations in the RET/PTC-RAS-BRAF pathway, comparatively little is known about the genetics of papillary thyroid carcinoma (PTC). We show that numerous microRNAs (miRNAs) are transcriptionally up-regulated in PTC tumors compared with unaffected thyroid tissue. A set of five miRNAs, including the three most up-regulated ones (miR-221, -222, and -146), distinguished unequivocally bet...
متن کاملThe promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms.
The incidence of cutaneous melanoma is steadily increasing. Although several molecular abnormalities have been associated with melanoma progression, the mechanisms underlying the differential gene expression are still largely unknown and targeted therapies are not yet available. Noncoding small RNAs, termed microRNAs (miR), have been recently reported to play important roles in major cellular p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 102 50 شماره
صفحات -
تاریخ انتشار 2005